
1

Transformation of Binary relations into Associations and Nested
Classes

Jamal Said, Eric Steegmans
Department of Computer Science, K.U.Leuven

Celestijnenlaan 200A
B-3001 Leuven

Belgium
Tel: +32-(0) 16-32 76 56
Fax: +32-(0) 16-32 79 96

E-mail: jamal.said@cs.kuleuven.ac.be
Abstract
In object-oriented paradigm, as the complexity of the software system increases, it’s cost to
develop and to maintain goes exponentially. This complexity emerges from the continuous
evolution in the software systems to cope with changing requirements. Throughout our study we
found that maintaining traceability between the evolved software processes (e.g. analysis, design)
in parallel with examining the ultimate software quality factors needed is an efficient way to cope
with this crucial problem. To maintain traceability requires keeping the line between the analysis
and the design phase crisp and distinct. This line can be defined by performing an active
transformation of the elements (i.e. classes and relations) of the conceptual model to produce
optimum design model. This transformation requires the structure and the semantics of the
predefined elements to be kept consistent with their equivalent ones in the design model. The
transformation process ends up with an optimum design model, thereby reducing complexity and
finally reducing the cost.
In this paper we will show two transformations for a simple conceptual model consisting of three
inter-related classes having a binary relation. Each of these transformations satisfies particular
software quality factor(s), from which the software engineer can choose the one that matches the
system intended functional requirements. The added value of this approach is that less manual
optimization is required and high maintenance is achieved.

1. Introduction

In the mid-nineties the idea of design patterns started to attract considerable attention in the area
of object-oriented software development. Design patterns [1] are architectural ideas applicable
across abroad range of application domains; each pattern enables the software engineer a solution
to a certain design issue. In fact, the patterns developed in the past few years are only incremental
additions to the software professional’s bag of standard tricks [2]. To put it more precisely, the
underlying representation of a design pattern and of its application, and the binding between these
two levels is not exactly defined and thus can be interpreted in different ways [7]. Other
researchers [3] have followed the qualitative design trends, which lead to designs that exhibit a
desirable quality and forms a movement from bad design model to good design model. These
two approaches (i.e. design patterns and the qualitative heuristics) have common basis since both
strive to reuse general knowledge rather than domain-specific code. Although these two
approaches show interest to software engineers, they lack the ability to keep traceability and
maintainability between the analysis and design models.
The analysis phase usually ends up with the conceptual model, in which the external world with
corresponding classes and objects is represented. In the traditional approach where we have a
chasm between analysis and design, the major input to the design process is the Software
Requirements Specification document. Because incompatible and non-integrated notations are
used from analysis to architectural design, a lot of rework is required, discovering the same
ambiguities again, maybe committing the same errors again, and (hopefully) correcting the same

mailto:jamal.said@cs.kuleuven.ac.be

2

errors again. This paper proposes an approach where the architectural design model, doesn’t start
off with an empty design, but it starts off with a design model, which is a copy of the analysis
model in the design notation. This model represents a complete description of the way the system
could work, covering all functional requirements. It does not represent a solution that meets all
the other requirements. It is then an approach to transform analysis model into a description of
the way we want the system to work. This approach can be worked out by considering the
elements of the conceptual model as a collection of simple conceptual model’s fragments and
based on object-oriented concepts and the software quality factors, these fragments are
transformed into design model. The transition from the conceptual model to the design model is
often an iterative process; thus it is crucial to be able to develop a framework that performs a
reliable and convenient transition between the two models.
Currently, software developers based on the conceptual model try to accomplish some actions
manually, which in most cases leads to a big distinction between experienced and inexperienced
developers and increases the cost of the software system due to maintenance. Given the fact that
software engineering is aiming at building robust and reliable software systems, an approach that
supports modeling and provides insights into understanding the software requirements and the
software design is crucial. This approach should not restrict the software engineer to a particular
phase of the software life cycle but it maintains link between the early phases (analysis and
design).
Without necessarily inhibiting choices of the design, taking a copy of the analysis model as an
initial design model is likely to enable smother transition from requirement modeling to design. It
also prevents unnecessary and non-justified differences between the analysis and design model. It
guarantees a better traceability between the analysis model and final design model. It also makes
design choices more explicit, as these are highlighted as justified changes between the analysis
and the design model.

2. Binary Relations at the Level of Analysis

The early stages of object-oriented analysis is mainly concerned with specification of the objects
that are relevant to the application being developed, then comes the refinement step in which the
relationships among those corresponding objects are examined in parallel with the study of the
events by means of which these relationships are manipulated.
In our view relationships are considered as characteristics of the involved objects. Consequently,
relationships of the same sort are grouped in a class. As an example, relationships between
persons and companies, expressing that companies employ persons, first of all lead to the
introduction of a class of employments. As a result a relation is said to refine objects of a given
class, a refinement expressing that these objects cannot exist without being related to objects of
the classes participating in the given relation [8, 9]. In our example, a relation will be introduced
refining the objects of the class of employments, in order to express that no employment can exist
without being related to a person on the one hand, and to a company on the other hand. Such
kind of relations is called binary relations which involve two participating classes and one refined
class. For example in banking application both classes persons and banks as illustrated in Figure1
are known as the participating classes and the class of accounts as the refined class.

Figure 1: class accounts is refined by class Persons and class Banks.
As mentioned before, any specified relation between objects is complemented with a
specification of operations for manipulating those involved objects.
For classes refined by a binary relation, at least a constructor, destructor and two queries must be
introduced. The constructor will initialize the binding of the new refined object with the given

AccountPersons Banks

3

objects of the two participating classes; the inspectors will return the objects of the two
participating classes involved in the refined relation. Furthermore, the refined class may introduce
mutators for changing the binding of refined objects to some other objects of the participating
classes. For example constructing a new account requires specifying the Person that will hold this
account and the grantor (bank) that will grant this account. Furthermore, a destructor for closing
the given account, a query (e.g. getBank, getPerson) for retrieving the owner (getPerson) and the
grantor (getBank) of this Account, and a mutator (e.g. transferTo) to transfer accounts from one
person to the other is required. Besides the constraint of mutability, constraint of multiplicity is
also important at the early stages of the analysis. For classes refined by a binary relation, the
multiplicity specifies how many objects of the one participating class can be associated at most
with the same object of the other participating class through objects of the refined class. The
resulted structural and behavioral aspect of the pattern shown in Fig. 1 is illustrated in Figure 2
below.

Figure 2: Structural and behavioral aspects of three classes involved in a binary relation.

3. Transformation of binary relations
During analysis the software engineer focuses on the issue of specifying the needed objects for
the system to meet its requirements and lining these objects with appropriate relationships to
construct a meaningful and complete conceptual model. In other words, the software developer is
only interested in which objects are needed not how these objects should be implemented, the
later is the subject matter of the design phase which will give the description of the involved
objects and relationships between them. The description of the classes and their relations are
prime items of the design model.
This paper presents a transformational approach to object-oriented design. Basically, a design
model is obtained by transforming fragments, as they can be observed in conceptual models.
Because a single fragment can be designed in many different ways, the designer chooses the most
appropriate one, based on quality factors for the ultimate system being developed.
This paper discusses transformations for a simple conceptual model defining the refinement of a
class by means of binary relation. For a pattern consisting of binary relation (Fig 3), there exist
different alternatives to transform it to design elements. In this paper we will focus on the
association and nesting transformations.

3.1 Association Transformation
The binary relation involves two participating classes and a refined class can be design in terms
of an association between the refined class and the participating classes. Associations represent
relationships between instances of classes (e.g. a person holds accounts in Banks; a bank grants
accounts to person From the conceptual perspective, associations represent conceptual
relationships between classes. In Figure 3, the diagram indicates that an

Figure 3: Class diagram with association relationships.

Person

addaccount()
removeAccount()
getAccount() : Account

Account

getPerson() : Person
getBank() : Bank
transferTo(Person p)

*1 *1

Bank

getAccount() : Account1** 1

Person

addAccount()
removeAccount()
getAccount()

Account

getPerson()
getBank()
transferto(p)
setBank(b)
tansferto(b)

*1 *1

Bank

getaccount()1** 1

4

account has to reference one person and must be granted by one bank. As far as the multiplicity is
concerned, which is an indication of how many objects may participate in the given relationship.
In Figure 3, the * between person and accounts indicates that a Person may have many accounts
associated with it; 1 indicates that an account related to only one person. The multiplicity between
accounts and Bank indicate that a Bank grants many accounts and an account has to be granted by
only one Bank.

• Within the specification perspective, associations represent responsibilities. Figure 3,
implies that there are one or more methods (i.e. getAccount) associated with Person that
will tell us know what accounts a given Person is holding. Similarly, there are methods
(getPerson, getBank) within Account that will let us know which Person holds this
account and which Bank grants a given account

• The given structure explained above would be transformed into design taking into
consideration both structural and behavioral aspects defined at the level of analysis.

• Because of the property of existential dependency-accounts cannot be created without
being attached to a Person on one hand and to a Bank on the other hand-- the construction
of objects of the refined class (Account) must initialize references to objects of the
participating classes (Person and Bank). Objects of the participating classes (Person,
Bank), on the other hand, can exist without being involved in associations with objects of
the refined class., Consequently, the constructor at the level of the participating class
initializes a new object without any association to objects of the refined class.

• The destructor for the refined class objects as it is specified at the level of analysis is
transformed into the method removeAccount. Notice that the reference to the destroyed
object is removed from the participating object.

• The existential dependency should also be considered when destroying the participating
objects. Before any participating object is destroyed one must check whether this object is
holding references to a refined object or not. If so all these refined objects must be
destroyed beforehand. For example, when a Person is removed from a Bank, it means his
account will also be.

• The inspectors defined at the level of the participating classes are transformed into the
method getAccount applicable to objects at the level of design. Notice that the method
returns an array in which references to all the Account’s objects are stored.

• Similarly the inspectors defined at the level of the refined class is transformed into the
method getPerson and getBank applicable to Account objects. This method and will return
the Person and the Bank attached to this account.

The mutator defined at the level of analysis is transformed into the method transferAccount. This
method transfers this Account to the specified Person and Bank.
Below we will show some methods with their specification implemented in Java. Notice the
specification’s notation used here is widely used in the literature [11].

import java.util.*;
/**
 * A class of person.
 */
public class Person {
 /**
 * Initialize a new Person with no Account nor bank objects attached to It.
 * @post No Bank object and account-objects are attached to the new person.
 * | new.getAccounts().size()= 0
 */
 public Person()
}
//Definition of the refined class Account
import java.util.*;

5

/**
 * A class for dealing with accounts attached to a Person and a Bank
 * @invar An account must all times be attached to a Person and a Bank.
 * @invar The Person and the Bank to which this account is
 * attached, must reference back to that account.
 * | getPerson().hasAccount(this)
 * | getBank().hasAccount(this)
 */
public class Account {
 /**
 * Initialize a new account attached to the <person> and the <bank>.
 * @param <person>
 * The Person to which the new account will be attached.
 * @pre <person> must be effective
 * | person <> null
 * @post The new account is attached to <person> and vice versa.
 * | (new.getPerson() = person)
 * and (((Person)((new person).getAccounts()).contains(this)) = true)
 * @param <bank>
 * The Bank to which the new account will be attached.
 * @pre <bank> must be effective
 * |bank <> null
 * @post The new account is attached to <bank> and vice versa
 * | (new.getBank() = bank)
 * |(((Bank)((new bank).getAccounts()).contains(this)) = true)
 */
 public Account(Person person, Bank bank)
 /**
 * Transfer the new account to specified person
 * @param <person>
 * The specified person to become participant to this account
 * @pre The specified person must be effective
 * | person <> null
 * @post The specified person is associated with this account
 * | new.getPerson() = person
 * @post This Account is no longer referenced by the person
 * to which it was associated before.
 * | for each i in 0..(this.getPerson()).getAccounts().size() - 1:
 * (this.getPerson()).getAccounts.elementAt(i) != this
 * and (this.getPerson()).getAccounts.size()
 * =(this(this.getPerson())).getAccounts.size() –1
 */
 public void transferAccount(Person person)
}
//definition of class Bank
/**
 * Definition of participating class Bank
 */
public class Bank {
 /**
 * Initialize a new bank with no accounts attached to it
 * @post No accounts attached to the new bank
 * | new.getNbAccounts() = 0
 */
 public Bank()
 }

Implementation1: Implementing association transformation.
With the association transformation the software engineer selects for the quality factors
flexibility, and re-usability over efficiency and simplicity.

6

• Limiting each of the involved classes to a specific area of interest (i.e. cohesion)
highlights flexibility. Furthermore, flexibility is stressed by allowing future modifications
to the software system. As far as coupling is concerned this transformation strives to have
high coupling by allowing the components to cooperate via message passing.

• This transformation is considered to be highly reusable since most of the structural and
behavioral aspects of the classes specified at the level of analysis are transformed at the
level of design with limited loss of information.

• As far as the efficiency is concerned this type of transformation is not the most efficient
one in terms of time and space since the memory requirement is high. Part of the objects
of the involved classes needs a separate location in memory, which in turn affects the
performance of the software system . The creation of new objects of the classes and the
message passing between them requires the execution to take more time than if they were
integrated in one class.

• Simplicity is not supported by this transformation since it requires message passing
between objects of the classes involved. The message passing might lead to
inconsistencies, if bi-directional associations are not designed and implemented with great
care.

3.2 Nesting Transformation
Nesting transformation occurs when one class is fully defined inside the other the concept which
known in Java as inner classes. Inner classes are powerful abstraction mechanism [5] that
facilitate much more convenient and manageable software than it would be when using only top-
level classes. They are remarkable as they allow to group classes and control the visibility of one
within the other.
Classes with binary relation can be transformed by defining one class inside the other. For
example, Figure 4, shows the participating class Bank having association with class Account
which is nested inside the participating class Person. Class Person serves as the outer class
through which the refined class Account (inner class) can be accessed. Notice also that the outer
class is responsible for creating and the Account objects.
The account objects are created by applying the method openAccount to Person objects. This
method when applied to person object will also initialize a bank object with the created Account
object due to the existential dependency. Notice that since the creation of the accounts depends on
the person objects then the accounts will automatically store implicit references to person objects.
Therefore, an object of the refined class is directly associated with the object of the outer class;
objects that created them. As a result the inner class object has direct access to the instance
variables of the enclosing class object. Notice that the compiler does the implicit reference to the
outer class objects itself. Concerning mutation Accounts cannot be transformed at the level of
design since the refined objects are nested in person objects, which are designated, immutable.

Figure 4: Account class nested in Person class and has an association with class Bank.

<<outer class

<<inner class>>

Person

openAccount(Bank bank)
getAccounts() : Account
eleminate()

implicit
association

Account

getBank() : Bank
getPerson() : Person
terminate()

Bank

getAccounts() : Account
terminate()

1

**

1

7

/**
 * The participating class Person.
 */
 public class Person {
 /**
 * Initializes a new Person with no Account nor bank objects
 * attached to it.
 * @post No Bank object and account-objects are attached to
 * the new person.
 * | new.getAccounts().size()= 0
 */
 public Person()
 }
 /**
 * Definition of the inner class Account.
 */
 public class Account {
 /**
 * initialize a new Account
 * @post Bank object must also be initiated
 * | this.getBank() == bank
 */
 Account(Bank bank)
 /**
 * Terminate this account
 * @post This account is terminated and detached from its participating
 * objects.
 * |!((new getPerson()).getAccounts().contains(this)
 * |!((new getBank()).getAccounts().contains(this)
 */
 public void terminate ()
 }//end of inner class
 /**
 * Creation of the account object
 */
 public void openAccount(Bank bank)
 }//end of outer class
/**
 * Definition of participating class Bank
 * Class bank has an association relationship with class Account
 */
public class Bank {
 /**
 * Initialize a new bank with no accounts attached to it
 * @post No accounts attached to the new bank
 * | new.getNbAccounts() = 0
 */
 public Bank()
}

Implementation 2: Implementing nesting transformation.
The added value to the object oriented software design by nesting transformation is that it
increases modularity as will as simplicity over efficiency.

• Modularity is the term that covers reusability and extendibility. Nesting transformation
helps in making these two classes easy to change. In association when one of the two
associated classes is expected to change we must take the navigability under consideration
whether the involved class is bi-directional or unidirectional, whereas, in nesting we know
already that the inner class objects have implicit references to their outer ones.

8

Concerning the reusability, nested transformation is highly reusable particularly for
applications where accessibility constraints are important

• This transformation is considered to be simple since it decreases the number of classes
developed at the package level. Which make the model easier to understand and maintain,
also it limits the number of message passing between the associated classes

• As far as efficiency is concerned it helps in time efficiency because both inner and outer
classes are stored in one file which makes message passing requires less time than if they
were stored in two separate files. However this transformation doesn’t help so much in
space efficiency since both the classes are stored in different places in memory

4 conclusion
In this paper we have shown that designing convenient and transparent software system can be
handled easily by keeping the line between the design and the analysis definite and distinct. This
line can be defined by performing an active transformation of the conceptual model’s elements
and relations (i.e. fragments) to produce a design model that perform the system intended
functionalities. We have seen that this technique offers the user to select among different
transformations the one that meets the design goals. As a result, this new technique doesn’t
require the software engineer to optimize the design model, which is lacking in the current
methodologies. Furthermore, this technique establishes a strict correspondence between
conceptual models at the level of analysis and design models at he level of design, which results
in high maintenance throughout the software system.

In this paper we have discussed binary relations and their transformations, and in the future work
this will be extended to cover the classes involved in generalization specialization and statics.

5. References
[1] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns. Elements of Reusable
Object Oriented Software. Addison- Wesley.
[2] Bertrand Meyer 1997. Object Oriented Software Construction. Prentice Hall.
[3] Arthur J. Riel (1996). Object Oriented Design Heuristics. Addison Wesley.
[4] Rumbaugh, J. Jacobson, I. & Booch, G. (1999). The Unified Modeling Language Reference Manual.
Addison Wesley.
[5] Martin Fowler with Kendall Scott (1998). UML Distilled : Applying the standard object modeling
language. Addison Wesley.
[6]Charles Richter (1999). Software Engineering Series. Designing Flexible Object –Oriented System with
UML. Macmillan Technical.
[7] Gerson Sunye, Alain le Guennec, and Jean-marc Lezequuel. Design Patterns application in UML.
ECOOP’ 2000 – Object oriented Programming 14th European Conference, Sophia Antipolis and Cannes,
France , , volume 1850 of lecture notes in Computer Science, pages 44 –62. Springer – NY, June 2000.
[8] Van Baelen, S., Lewi, J., and Steegmans, E., Constraints in Object-Oriented Analysis and Design,
Technology of Object-Oriented Languages and Systems TOOLS 13, eds. Magnusson, B., Meyer, B.,
Nerson, J.-M., and Perrot, J.-F., Prentice-Hall, Hertsfordshire, UK, 1994, pp. 185-199.
[9] Van Baelen, S., Lewi, J., Steegmans, E., and Swennen, B., Constraints in Object-Oriented Analysis,
Object Technologies for Advanced Software, LectureNotes in Computer Science 742, eds. Nishio, S., and
Yonezawa, A., Springer-Verlag, Berlin, D, 1993, pp. 393-407.
[10] Said J., Steegmans E., Transformation of Unary Relations: Proceeding ICSSEA 2000, 13th

International Conference on Software & System Engineering and their Applications , Paris – France
(2000).
[11] Bruegge B., Dutoit A.H., Object-Oriented Software Engineering. Prentice-Hall, Inc. 2000, pp. 239.

	1. Introduction
	2. Binary Relations at the Level of Analysis
	3. Transformation of binary relations
	3.1 Association Transformation

	3.2 Nesting Transformation
	4 conclusion
	5. References

